Exascale I/O challenges

Storage tiers

- Flash/NVRAM for peak performance (local)
- Disk for capacity (global)
- Fault management
 - Isolation between global/local storage
 - Timely notification / avoidance
 - Data integrity
- Pre-stage / post-drain
 - Scheduler integration
 - What to move and where to put it
- Edge v. ubiquitous storage
 - Post v. pre I/O function shipping
 - Filesystem v. memory extension / application objects
 - Resilience (checkpoint) strategy
 - Application & I/O comms interactions
Exascale I/O challenges

Application data + metadata

- Explosive growth
 - Large, sophisticated models
 - Uncertainty Qualification
 - Billions – trillions of “Leaf” data objects
 - Complex analysis

- Filesystem namespace pollution
 - Keep filesystem namespace for storage management / administration
 - Separate namespace for application data + metadata
 - Distributed Application Object Storage (DAOS) containers

- Preserve model integrity in the face of all possible failures
 - Very large atomic, durable transactions
 - Integrity APIs at all levels of the I/O stack

- Search / query / analysis
 - Non-resident index maintenance & traversal / non-sequential data traversal
 - Move query processing to global storage
 - Same programming model as apps?
Exascale I/O challenges

Integrated computational model

• Multi-disciplinary requirements gathering
 – Application developers
 – High-level I/O library writers
 – Scheduling / workload management experts
 – Storage experts

• Compelling simulation / analysis platform
 – Programming & I/O models + runtime
 • Storage integral to workflow & resilience strategies
 – Fully expressive low-level application storage APIs
 • Full application access to virtualized hardware capabilities
 – Locality / concurrency / integrity
 – Multiple application domain specific I/O models