Lustre Future Development

- Andreas Dilger
 Principal Lustre Engineer
 Whamcloud, Inc.
adilger@whamcloud.com
Community Lustre Roadmap

- **Maintenance Releases on an ad-hoc basis**
 - 1.8.7-wc1 → 1.8.8-wc1

- **Maintenance Releases every quarter**
 - 2.1.1 → 2.1.2

- **Feature Releases**
 - 2.2 → 2.3 → 2.4 → 2.5

Sponsor for Whamcloud Development and Releases:
- ORNL
- OpenSFS
- LLNL
- Whamcloud

Third Party Development:
- CEA
- Xyratex

- Imperative Recovery
- Dirop SMP Scaling
- Wide Striping
- Statahead Speedup
- Server Stack SMP Scaling
- LFSCK OI check/scrub
- OSD restructuring
- DNE - Remote Directory
- HSM
- LFSCK MDT-OST Consistency
- Network Request Scheduler
- DNE - Striped Directory
- LFSCK MDT-MDT Consistency
Lustre 2.3 - September 2012

- Client code cleanup (EMC/Cray)
 - Finish 2.6.38 dcache scalability changes
 - Port started for 3.1, 3.3 upstream kernels
 - Clean up old kernel portability code, isolate from server code
 - Groundwork for landing Lustre client to upstream kernel

- Single Server Metadata Performance (WC/OSFS)
 - LNET, ptlrpc locking improvements
 - Improved ptlrpc service thread scheduling (MRU)
 - NUMA affinity for ptlrpcd threads (checksums)

- LFSCK Online scrub - OI Rebuild (WC/OSFS)
 - OSD object iterator to efficiently traverse in-use inodes
 - Object Index (OI) verify/rebuild (corruption, or MDT backup/restore)
 - Distributed consistency checking infrastructure
Lustre 2.3 - continued

- **Job Scheduler ID statistics tracking (WC)**
 - Extract Job ID from client environment
 - Scheduler-dependent, tunable environment variable name
 - Send Job ID with every RPC to server
 - Track per statistics, like per-client stats

- **OSD Restructuring - Object Filter Device (WC/LLNL)**
 - OST/obdfilter code layered on top of OSD API
 - Will allow OST to benefit from Parallel Directory Operations
 - Allow running OST on top of ZFS
 - Presentation on this later today

- **Client Checksum improvements (Xyratex)**
 - Kernel assembly/hardware assistance
 - Performance-based algorithm selection
 - Presentation on this later today

- **Many other projects underway**
 - Not scheduled for release/landing until they are ready

http://wiki.whamcloud.com/display/PUB/Lustre+Community+Development+in+Progress
Lustre 2.4 - March 2013

- **OSD Restructuring - LOD/OSP (WC/LLNL)**
 - Remove VFS usage from MDS/MGS
 - Allow running MDT, MGT on ZFS

- **LFSCK Online scrub - MDT-OST consistency (WC/OSFS)**
 - Verify MDT inode to OST object references, or recreate missing objects
 - Verify each OST object is referenced by MDT inode, or move to lost+found
 - Verify no OST object referenced by two inodes, or copy/unlink/quarantine

- **Distributed Namespace - Remote Directory (WC/OSFS)**
 - Split namespace for subdirectory trees (e.g. /home/{user})
 - Scale metadata size/performance beyond single MDS
 - Presentation on this later today

- **Network Request Scheduler (WC/Xyratex)**
 - Reorder read/write operations for more optimal/repeatable disk order
 - Infrastructure for request prioritization (QOS, throttling, etc.)
 - Presentation on this later today

- **4MB Bulk RPC transfers (Xyratex)**
 - Submit larger IO requests to disk
 - Less round-trip latency for WAN usage
Lustre 2.4 - ZFS OSD (WC/LLNL)

- Leverage many features immediately
 - Robust code with 10+ years maturity
 - Data checksums on disk + Lustre checksums on network
 - Online filesystem check/scrub/repair - no more `e2fsck`!
 - Scales beyond current ldiskfs object/filesystem limits
 - Drive commodity JBOD storage without RAID hardware
 - Integrated with flash storage cache (L2ARC)

- More ZFS features to leverage in the future
 - Snapshots, end-to-end data integrity, datasets
 - Active open development community (Delphix, Joyent, Illumos)

- Build Lustre servers without kernel patches

- Compatible with 1.8 clients
 - Minor issues fixed, and/or handled on server
Lustre 2.4 - HSM (WC/CEA)

- Originally developed by CEA France
- Simple archive back-end interface
 - Copy a file to archive, notify MDS it is finished
 - Initially supports HPSS and POSIX APIs
 - POSIX copytool can archive to any “filesystem”
 - HPSS copytool available to HPSS users
- Infrastructure useful for other projects
 - Layout lock for dynamic inode layouts
 - Data migration between storage pools/tiers
 - Asynchronous data mirroring
 - Policy engine to provide automation interface
 - Integrate with Lustre ChangeLog to avoid scanning
 - Manage space, tiers, users, directory trees, file types
Lustre 2.5 - September 2013

- Distributed Namespace - Shard/Stripe dir (WC/OSFS)
 - Split a single large directory over multiple MDTs
 - Better size/performance for single directory
- LFSCK Online scrub - MDT-MDT consistency (WC/OSFS)
 - Verify parent->child remote directory
 - Verify master->slave directory shards

- OpenSFS TWG prioritizing other features
 - Requirements gathered from OpenSFS members, community
 - Developing consensus on short list of features
 - OpenSFS members vote to select priority feature funding
 - Meeting this Wednesday afternoon
 - One more good reason to join OpenSFS
Lustre 2.5+ - Storage Management

- Asynchronous Object Mirroring/Migration
 - File mirroring is critical to long-term availability
 - Selective mirroring of objects, within/across OST pools
 - Migration to balance OST usage, empty old OSTs

- Storage Tiers
 - Extension of existing OST pools
 - Different types of storage (flash, SAS, SATA) or locations
 - Add per-pool quotas to control usage/access permission
 - Leverage HSM infrastructure (copytool, policy engine)

- Complex File Layouts
 - Different layouts/pools for extents of the same file
 - Incrementally change striping as file grows

- Useful separately, powerful together
Lustre 2.5+ - Management/availability

- **LNET configuration/robustness**
 - Better tools, online routing configuration changes
 - LNET channel bonding, IPv6

- **Scalable fault detection/Health Network**
 - Reduce ping overhead (avoid clients*servers pings on idle system)
 - Faster notification of client/server failure = faster recovery/response

- **Improved Lustre Management**
 - Improved configuration tools, interfaces, and robustness
 - Better application programming interfaces

- **Administrative shutdown of servers**
 - Flush client caches/locks before server shutdown
 - Faster recovery of clients for controlled restarts
 - Transparent protocol changes possible
 - Simplified upgrade code = improved reliability
In every feature release

- Ongoing bug fixing
- Handling kernel API changes
- Performance improvements
- Other minor features
- Usability fixes

- Feature releases with funding from OpenSFS
Thank You

- Andreas Dilger
 Principal Lustre Engineer
 Whamcloud, Inc.
 adilger@whamcloud.com
ZFS on Linux Licensing Answers

- ZFS is NOT a derived work of Linux
 "It would be rather preposterous to call the Andrew File System a 'derived work' of Linux, for example, so I think it's perfectly OK to have an AFS module, for example." – Linus Torvalds

 "Our view is that just using structure definitions, typedefs, constants, macros with simple bodies, etc., is NOT enough to make a derivative work. It would take a substantial amount of code (coming from inline functions or macros with substantial bodies) to do that." – Richard Stallman (The FSF's view)

- ZFS module is Open Source Software
 - Even proprietary binary modules tolerated (Nvidia, GPFS, etc)

- Companies already support OpenSolaris ZFS
 - Nexenta, Joyent, may other vendors via Illumos
 - CDDL provides ZFS patent indemnification