

© 2010 Whamcloud, Inc.

Lustre file striping across
large number of OSTs
•  Oleg Drokin

Senior Engineer
Whamcloud, Inc.

© 2010 Whamcloud, Inc.

•  Tens of thousands of OSTs possible
–  Existing systems with up to 1,300 OSTs
–  OST count is bound to grow

•  160 stripes per file max
–  Limit is due to the way striping information is stored
–  ext3 & ext4 have limited amount of “EA” space
–  32(48) byte header + N stripes * 24 bytes object description
–  160*24 + 32 = 3872 + filesystem overhead

Current situation with striping

3

© 2010 Whamcloud, Inc.

•  Single file is limited in bandwidth to what 160
OSTs can provide
–  A big deal for apps that prefer to deal with a single file

•  A single file size is limited to ~320T
–  Single object is limited to 2T-4k
–  Higher ext4 file size limit cannot be used for compatibility reasons.

Why do we need more stripes per file?

4

© 2010 Whamcloud, Inc.

•  Evolutionary means:
–  No major code changes in Lustre
–  No protocol changes required to allow old clients to work with the

filesystem

•  Changes involved:
–  Ext3/4 to allow bigger EA space
–  Lustre buffer allocations change to accommodate bigger data size
–  Compatibility code to not send too big data to old clients
–  Server-side object destroys on unlink

Evolutionary growing the stripe count
limit

5

© 2010 Whamcloud, Inc.

•  To allow larger EA data:
–  Allocate new inode
–  Store large EA data as file body of that inode

•  Allows for really large EA sizes if we want to
–  Original file inode points to this new EA inode

•  Specially encoded xattr block pointer

•  Resulting filesystem is not backwards
compatible with older ext3/4 code

•  Agreement from ext4 maintainers to adopt
this code if another feature is implemented.

Ext3/4 changes

6

© 2010 Whamcloud, Inc.

•  No way to know required buffer size before
contacting server
–  Must use pessimistic estimate of maximum number of OSTs

•  Change large allocations to vmalloc
–  Linux does not like normal allocations of more than 2 pages

•  All network buffer allocations must grow
–  We don’t know striping beforehand so must assume the worst
–  To contain buffer growth maximum stripe count limited to 1352
–  Max MDS request size changed from 5k to 32k
–  Max MDS reply size changed from 9k to 75k

Lustre buffer allocations

7

© 2010 Whamcloud, Inc.

•  Old clients still have smaller buffers
–  Only report total RPC reply size

•  A test during create to only stripe up to 160-
way for small RPCs

•  Other RPCs test if the reply would fit
–  Return –EFBIG if not
–  Reserved space for other buffers (like XATTRs) allows access to

files striped more than 160-way

Compatibility with older clients

8

© 2010 Whamcloud, Inc.

•  Unlink requires huge reply buffers
–  Usual space for striping information
–  Plus space for “unlink cookies” for client-performed destroy
–  More than doubles space requirements

•  There is no reason for older clients to be
unable to unlink hugely-striped files
–  So if there is not enough reply buffer space MDS must destroy

objects

•  MDS-initiated destroys is not free
–  Hogs MDS threads and CPU

Unlink implications

9

© 2010 Whamcloud, Inc.

•  Code tested at ORNL 1300 OSTs filesystem
–  Mostly works

•  Older clients work fine with updated servers
–  Even when widely-striped files are present
–  Can access files with ~250 stripes

•  Metadata operations slower for wide-striped
files
–  Not unexpected

•  The code is available for interested parties at:
•  git://git.whamcloud.com/fs/lustre-dev.git

–  Branch widestriping

Results so far

10

© 2010 Whamcloud, Inc.

•  Make RPC buffers dynamic
–  No point in penalizing all allocations when only a few files are

expected to be widely-striped
–  Make clients retry with bigger buffers is small buffer request failed

•  More testing and stability improvements
–  Obviously

•  Merging into 2.2 hopefully

Path forward with this simple
approach

11

© 2010 Whamcloud, Inc.

•  Brute-force evolutionary approach
–  Limited in scaling
–  Sending megabytes of striping data around is not very practical
–  File attributes scalability is also a problem

•  Hopefully Size-on-MDS is ready soon

•  Next, revolutionary approaches we are
considering
–  Your input is very valuable

Summary

12

© 2010 Whamcloud, Inc.

•  MDS FID to identify all objects
–  No need for precreates anymore. OST objects created on first

access
–  Need to ensure objects are not recreated after destroy

•  OST index is enough to identify a stripe
–  Reduces per-stripe info to 2-4 bytes

•  OST index ranges to further compress striping
information
–  4 (index) + 2 (number) = 6 bytes to store entire range of possibly

thousands of subsequent OSTs

Single FID scheme

13

© 2010 Whamcloud, Inc.

•  Not at all compatible with existing clients
•  Possible to unpack this striping on MDS for old

clients
–  As long as it fits into provided buffers
–  Puts an extra strain on MDS CPU

•  Possible to unpack on Lustre proxies
–  Once we have them
–  Shifts CPU burden from MDS elsewhere
–  Such proxies are still in the somewhat far future

Compatibility of single FID and OST
range scheme

14

© 2010 Whamcloud, Inc.

•  Single file, many individual stripes
–  Each stripe is its own file, cannot be brought together in a

concatenated view.
–  Like file per process without the extra metadata overhead
–  Single FID usage brings that to very efficient storage of striping

information too

Non-POSIX single FID ideas

15

© 2010 Whamcloud, Inc.

•  Does the client need entire layout
–  Everything we said so far assumed it does

•  Complex layouts consisting of multiple bits is
also an option
–  Composite layout where each sub layout applies only to some

extent in the file
–  Easy to switch in the middle of the file if conditions change (e.g.

due to out of space)
–  Client would only request layouts for the range it works with
–  New problems to solve

•  Finding file size, truncate
–  “Joinfile” on steroids

Composite layouts

16

© 2010 Whamcloud, Inc. © 2010 Whamcloud, Inc.

•  Oleg Drokin
Senior Engineer
Whamcloud, Inc.

Thank You

