The Statistical Properties of Lustre Server-side I/O

A work in progress

Lustre User Group April 12, 2011

Andrew Uselton
National Energy Research Scientific Computing Center
Lawrence Berkeley National Lab
Contents

1. LMT: The Lustre Monitoring Tool
2. LMT Use Cases
3. I/O System Balance
4. Occurrence Histograms
5. A Simple Model
6. Conclusions
Outline

1. LMT: The Lustre Monitoring Tool
2. LMT Use Cases
3. I/O System Balance
4. Occurrence Histograms
5. A Simple Model
6. Conclusions
System layout

- milage may vary
Cerebro

- lightweight
- extensible
- handles data transfer
Cerebro
LMT

- compiled libraries
- one per sever
- harvests \(/proc \) values
MySQL

Cerebro
LMT
MySQL

- daemon receives packets (UDP)
- library processes contents
- db stores values
- cron job summarizes (optionally ages)
- misc. tools for querying db

MySQL

- cluster interconnect
- compute
- login
- OSS
- MDS

LMT Use Cases
I/O System Balance
Occurrence Histograms
A Simple Model
Conclusions
Data

- Bytes read
- Bytes written
- Inodes available
- Queue depths
- Operations (e.g. `open()`) per second
- *many more*
Data

- Bytes read
- Bytes written
 - Inodes available
 - Queue depths
 - Operations (e.g. `open()`) per second
 - *many more*
Outline

1. LMT: The Lustre Monitoring Tool
2. LMT Use Cases
3. I/O System Balance
4. Occurrence Histograms
5. A Simple Model
6. Conclusions
Monitoring Activity in Real Time

Franklin scratch current I/O conditions
2011-04-08 11:20:45 to 2011-04-08 11:30:40

The Performance Monitoring Archive (PMA): Franklin file system activity
http://portal.nersc.gov/project/pma/current.php?system=franklin

The Performance Monitor
Franklin current

file system: scratch

Show file system activity
Detailed Performance Analysis

Aggregate IOR, IPM, and LMT rates

Data Rate (MB/s)

Time (PDT)
Gestalt of a Full Day of Activity

I/O rates from 2011-04-04 00:00:00

Data Rate (MB/s)

Time (PDT)

read
write
Monitoring Long Term Trends

![Graph showing average daily rates over time. The graph compares read and write data rates with peaks and valleys indicating variability.]

- **Average daily rates**
- **Read** (red line)
- **Write** (blue line)

Data Rate (GB/s)
- X-axis: Time (PDT)
- Y-axis: Data Rate (GB/s)

Key Observations
- Peak activity occurs at specific intervals, indicating bursty I/O.
- Lower rates are more consistent, suggesting steady background activity.

Conclusion
- Long-term monitoring tools like LMT are crucial for understanding system behavior.
- Predictive maintenance and resource allocation can be improved with historical data analysis.
Outline

1 LMT: The Lustre Monitoring Tool
2 LMT Use Cases
3 I/O System Balance
4 Occurrence Histograms
5 A Simple Model
6 Conclusions
I/O System Balance - between cost and performance

- More money spent means (we hope) better performance

![Graph showing I/O Performance as a function of the money spent](image)
I/O System Balance - between cost and performance

- More money spent means (we hope) better performance
- Upto a point

I/O Performance as a function of the money spent

![Graph showing I/O Performance as a function of Expense](image)
I/O System Balance - between cost and performance

- More money spent means (we hope) better performance
- Upto a point
- How can you tell where that point is?
I/O System Balance - between cost and performance

- More money spent means (we hope) better performance
- Upto a point
- How can you tell where that point is?
- The answer depends on both the I/O system and the workload

I/O Performance as a function of the money spent

- More money spent means (we hope) better performance
- Upto a point
- How can you tell where that point is?
- The answer depends on both the I/O system and the workload
I/O System Balance - between I/O and compute capacity

- We want to keep the compute resource near 100% utilized

Utilization as a function of load

Utilization

load
I/O System Balance - between I/O and compute capacity

- We want to keep the compute resource near 100% utilized
- Job schedulers are designed to make this happen
I/O System Balance - between I/O and compute capacity

- We want to keep the compute resource near 100% utilized
- Job schedulers are designed to make this happen
- A clogged I/O system creates a hidden penalty

Throughput suffers when the load is too high
I/O System Balance - between I/O and compute capacity

- We want to keep the compute resource near 100% utilized.
- Job schedulers are designed to make this happen.
- A clogged I/O system creates a hidden penalty.
- Can we “buy” compute resource (cheaper) by buying I/O?
I/O Contention
I/O Contention
Case Study: April 2009 I/O Upgrade

- I/O upgrade in April 2009 significantly improved performance
Case Study: April 2009 I/O Upgrade

- I/O upgrade in April 2009 significantly improved performance
- It is hard to see that fact in the before and after rate graphs
Case Study: April 2009 I/O Upgrade

- I/O upgrade in April 2009 significantly improved performance
- It is hard to see that fact in the before and after rate graphs
- Were the workloads on the two days even comparable?
Outline

1. LMT: The Lustre Monitoring Tool
2. LMT Use Cases
3. I/O System Balance
4. Occurrence Histograms
5. A Simple Model
6. Conclusions
A histogram shows the frequency that I/O of a particular size occurred.
A histogram shows the frequency that I/O of a particular size occurred.

A log scale makes it easier to see the shape of the distribution.
A histogram shows the frequency that I/O of a particular size occurred.

A log scale makes it easier to see the shape of the distribution.

A histogram can compile data over an arbitrary time scale.
Power Spectrum: Before and After

- A power spectrum multiplies the histogram by the size of the observations
Power Spectrum: Before and After

- A power spectrum multiplies the histogram by the size of the observations
- before and after data (without log scale)
Power Spectrum: Before and After

- A power spectrum multiplies the histogram by the size of the observations
- before and after data (without log scale)
- This emphasizes the significance of the larger transactions
Probability Density: Before and After Comparison

- one day of data before a major upgrade
Probability Density: Before and After Comparison

- one day of data before a major upgrade and after
- but are the two days really comparable?
Probability Density: Before and After Comparison

- one day of data before a major upgrade and after
- but are the two days really comparable?
- We can expect (hope) that the workload over long timescales is constant
Probability Density: Before and After Comparison

- one day of data before a major upgrade and after
- but are the two days really comparable?
- We can expect (hope) that the workload over long timescales is constant
Outline

1. LMT: The Lustre Monitoring Tool
2. LMT Use Cases
3. I/O System Balance
4. Occurrence Histograms
5. A Simple Model
6. Conclusions
A Simple Model

- A transaction arrives at some arbitrary point

\[s = 5 \text{ seconds}, \quad r = 400\text{MB/s} \]

\[B = 9.96\text{GB} \]

\[t = 24.9\text{s at 400MB/s} \]
A Simple Model

- A transaction arrives at some arbitrary point
- It is split across multiple observation intervals
A Simple Model

- A transaction arrives at some arbitrary point
- It is split across multiple observation intervals
- Assumptions:
 - All the I/O in the transaction comes in together

\[B_0 = r \times s = 2GB \]

\[0.44GB \rightarrow 2GB \quad 2GB \quad 2GB \quad 2GB \rightarrow 1.52GB \]
A Simple Model

- A transaction arrives at some arbitrary point
- It is split across multiple observation intervals
- Assumptions:
 - All the I/O in the transaction comes in together
 - The I/O proceeds at its maximum rate until complete

\[B_0 = r \times s = 2\text{GB} \]
A Simple Model

- A transaction arrives at some arbitrary point
- It is split across multiple observation intervals
- Assumptions:
 - All the I/O in the transaction comes in together
 - The I/O proceeds at its maximum rate until complete
 - One transaction at a time

\[B_0 = r \times s = 2\text{GB} \]

0.44GB → 2GB 2GB 2GB 2GB → 1.52GB
Big Transactions $T > 1, (B > B_0)$

- It simplifies things to express the transaction size as a multiple of the maximum observation size: $T = B/B_0$
- $b_0 + b_5 < 1$ and $n = \lfloor T \rfloor + 2$
Big Transactions $T > 1, (B > B_0)$

- It simplifies things to express the transaction size as a multiple of the maximum observation size: $T = B / B_0$
- $b_0 + b_5 < 1$ and $n = \lceil T \rceil + 2$
- $b_0 + b_4 > 1$ and $n = \lfloor T \rfloor + 1$
Small Transactions $T < 1, (B < B_0)$

- Fits within one observation interval
Small Transactions $T < 1, (B < B_0)$

- Fits within one observation interval
- Split across two
Distribution of Observations for Large Transactions, $T > 1$

\[b_0 = 0.22, \quad b_1 = 1.0, \quad b_2 = 1.0, \quad b_3 = 1.0, \quad b_4 = 1.0, \quad b_5 = 0.76 \]

- $p_A = \frac{T - 1}{T + 1}$ chance that an observation is at $x = 1$
Distribution of Observations for Large Transactions, $T > 1$

- $p_A = \frac{T-1}{T+1}$ chance that an observation is at $x = 1$
- $p_B = \frac{2}{T+1}$ chance that an observation is an *end*
Distribution of Observations for Small Transactions, $T < 1$

\[b_0 = T = 0.765 \]

- $p_C = \frac{1-T}{1+T}$ chance that an observation is at $x = T$
Distribution of Observations for Small Transactions, $T < 1$

- $p_C = \frac{1-T}{1+T}$ chance that an observation is at $x = T$
- $p_D = \frac{2T}{1+T}$ chance that it is as piece of a *split* transaction
A Distribution $T(x)$ Over Transaction Sizes ($x > 1$)

- Suppose $T(x) = \beta \exp(-x/\beta)$
A Distribution $T(x)$ Over Transaction Sizes ($x > 1$)

- Suppose $T(x) = \beta \exp(-x/\beta)$
- $p_a(x)$ is a delta function with $p_A = \int_1^\infty \frac{x-1}{x+1} T(x) dx$
A Distribution $T(x)$ Over Transaction Sizes ($x > 1$)

- Suppose $T(x) = \beta \exp(-x/\beta)$
- $p_a(x)$ is a delta function with $p_A = \int_1^\infty \frac{x-1}{x+1} T(x) dx$
- But suppose there is a variability $p_a(x) = p_A G(x, \sigma)$ (Gaussian)
A Distribution \(T(x) \) Over Transaction Sizes \((x > 1) \)

- Suppose \(T(x) = \beta \exp(-x/\beta) \)
- \(p_a(x) \) is a delta function with \(p_A = \int_1^\infty \frac{x-1}{x+1} T(x) dx \)
- But suppose there is a variability \(p_a(x) = p_A G(x, \sigma) \) (Gaussian)
- \(p_b(x) = \int_1^\infty \frac{2}{x+1} T(x) dx \)
A Distribution $T(x)$ Over Transaction Sizes ($x < 1$)

\[T(x) = b \cdot e^{-x/b}, \quad b = 1.0000 \]

\[p_c(x) = (1 - x) \cdot T(x) \]
A Distribution $T(x)$ Over Transaction Sizes ($x < 1$)

- $p_c(x) = (1 - x)T(x)$
- $p_d(x) = 2 \int_x^1 T(x')dx'$
A Distribution $T(x)$ Over Transaction Sizes ($x < 1$)

- $p_c(x) = (1 - x)T(x)$
- $p_d(x) = 2 \int_x^1 T(x')dx'$
Outline

1 LMT: The Lustre Monitoring Tool
2 LMT Use Cases
3 I/O System Balance
4 Occurrence Histograms
5 A Simple Model
6 Conclusions
Challenges

- curve shape
- curve fit estimates
- variability
- modes
Conclusions

- LMT is a source of data on file system performance
- I/O contention can result from a system imbalance
- System balance depends on the workload
- A statistical view can illuminate the workload pattern
- A very simple model helps relate the workload to the observations
- Using the observations to infer the workload is hard
Conclusions

- LMT is a source of data on file system performance
- I/O contention can result from a system imbalance
- System balance depends on the workload
- A statistical view can illuminate the workload pattern
- A very simple model helps relate the workload to the observations
- Using the observations to infer the workload is hard
- But not impossible
Questions?

- https://computing.llnl.gov/linux/cerebro.html
 - Al Chu

- http://code.google.com/p/lmt/
 - Herb Wartens, Jim Garlick
A large fraction of all observations are 0.0 and even more are in the first bin close to 0.0. If the read and write I/O streams were truly independent the occurrence of both read and write observations simultaneously would be about the product of their separate probabilities.
Zeros, Month by Month