Gemini LND driver challenges

James Simmons, ORNL
Background

- ORNL largest cray system upgraded from XT5 to XK7
- Went from using SeaStar to Gemini
- Currently using modified Lustre 1.8.6 clients
Performance evaluation

- Theoretical promised raw performance
 - 3 GB/s small messages
 - 6 to 7 GB/s bulk messages
- Gemini 1.8 LND driver real numbers
 - 1.0 GB/s small messages
 - 1.6 GB/s bulk messages
Causes

• Check summing is expensive
 • On – 1.6 GB/s
 • Off – 3.8 GB/s
• Original driver was not multiple threaded.
 • Newer driver version have added threads to handle parallel check summing for service nodes
 • Threads in newer driver added for service nodes only
Possible Solutions

• Different check sum algorithm
• Avoid check summing in certain cases
• Are more threads the solution
• Have these problems been solved before?
Lustre 2.4

- Lustre had the same challenges
 - New crypto api used for check summing.
 - SMP scaling
Lustre Crypto api

• More choices of check sum algorithms.
• Hardware optimized choices.
• Ptlrpc does bulk checksumming
 • No need to check sum on routers
 • Double check summing is bad
Crypto challenges

- Cray default kernel lacks most crypto targets
- Lustre assumes crypto supported targets are there
- Both DVS and Lustre use LNET
 - Impacts bulk check sum optimization
GnilNd SMP scaling

• Rework LND driver according to mapping between layers.
 • X LNET interfaces : Y devices : Z CPT
• Per CPT allocations to limit cache migration
• CPU affinity to threads
SMP API gives greater control

- You can control which cores belong to which CPT
 - Don't need to use all cores
- You can map LNET interfaces to specific CPT
 - Use this to limit compute node noise
Gemini LND platform targets

- Cray platforms vary greatly
 - XE6 – AMD Magny-Cours
 - XK7 – AMD Bulldozers
 - XC30 – Intel Xeon E5-2600 Series

- Compute nodes and Service nodes for the same family of hardware need different configurations
- XC30 uses Aries interconnect. Others use Gemini
 - Both interconnects are supported with same software stack
Hardware influences configuration

• Processor properties
 • NUMA and cache shared between cores
 • AMD shares the FPU between 2 cores
• Compute nodes want as many cores for jobs as possible
 • Use $\frac{1}{2}$ cores for jobs. Other $\frac{1}{2}$ for LND
• Gemini hardware attached to only one of the two sockets via the HyperTransport.
 • Test if CPT on second socket adds any value
• Hardware check summing
Test configuration

• Are more CPT better.
 • Service node – 1 socket with 6 cores
• Were do threads cost us versus benefits
 • Computes have 24 cores total
 • Don't want to use all the cores
 • Optimize core usage based on NUMA
• When do we saturate the interconnect.
• Which crypto check sum algorithm is best
Progress so far

• Base line numbers finish
• SMP scaling code done and stable
 • More optimizations possible
• Checksumming code work in progress
 • Issues with lack of kernel crypto algo support
 • Have code but needs to be debug. Oops :-(
• TODO
 • SMP performance evaluation
 • Delay due to Lustre 2.4 testing which is highest priority
Thank you!