Lustre* - Fast Forward to Exascale ¢
High Performance Data Division

Eric Barton
18th April, 2013

DOE Fast Forward IO and Storage

A Exascale R&D sponsored by 7 leading US national labs

I Solutions to currently intractable problems of Exascale required to meet the
2020 goal of an Exascale system

A Whamcloud & partners won the |0 & Storage contract

I Proposal to rethink the whole HPC 10 stack from top to bottom
A Develop a working prototype
A Demonstrate utility of prototype in HPC and Big Data

I HDF Group — HDF5 modifications and extensions

I EMC — Burst Buffer manager & I/O Dispatcher

I Whamcloud — Distributed Application Object Storage (DAOS)

I Cray — Scale out test

A Contract renegotiated on Intel acquisition of Whamcloud
I Intel — Arbitrary Connected Graph computation
I DDN — Versioning Object Storage Device

Intel® High Performance Data Division

Project Schedule

A 8 project quarters from July 2012 through June 2014
I Quarterly milestones demonstrate progress in overlapping phases
I Planning — architecture — design — implementation — test — benchmark

Project Quarter
Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8
July 2012 Oct 2012 Jan 2013 April 2013 July 2013 Oct 2013 Jan 2014 April 2014
: Solution : :
A i Detailed Design
anning Architecture 2
AQG Demonstrations
HDF Demonstrations
IOD Demonstrations
DAOSDemonstrations
BEnd-toEnd Demo
& Reporting

Intel® High Performance Data Division

Project Goals

A Make storage a tool of the Scientist
I Tractable management
I Comprehensive interaction

I Move compute to data or
data to compute as appropriate

Storage Cluster

A Overcome today’s IO limits
I Multi-petabyte datasets

I Shared file & metadata performance C{%
n - - .s cientist Workstation 2::1?:3
| Horizontal scaling & jitter g

(Local Python Scripting)

Start/Run
Simulation

A Support unprecedented fault tolerance

I Deterministic interactions with failing hardware & software
I Fast & scalable recovery

I Enable multiple redundancy & integrity schemes

Intel® High Performance Data Division

Non-blocking APIs

A litter
I Scheduling noise
I Power management
I Dynamic load imbalance

Processes -3

I Bulk synchronous programming simplifies application development
I Makes strong scaling harder

A Loose coupling
I Closes idle “gaps”
I Requires non-blocking IPC and IO

A All 10 non-blocking

I Initiation procedure / completion event

Intel® High Performance Data Division

Collectives

A Scalable O(log n) group operations

I Open, commit...

A Push communications up the stack

I Higher levels may...
A Be able to piggyback on their own communications.
A Have access to higher performance communications.

A local2global / global2local
I Single process performs |0 API call on behalf of process group
I local2global creates opaque shareable buffer
I global2local uses shareable buffer to bind local resources

Intel® High Performance Data Division

Locking & Caching othin,
n.3.3.

Serialization kills scalability ' '
|

I It's not the storage system’s responsibility

A
Ve

23,
£

o
PRy

Storage is not message passing

I Tightly coupled processes should
communicate directly

w2 Low-level 10 should not predict high level caching requirements
I Read-ahead / write behind is different from working set

Avoid premature block alignment

I It's a needless source of contention

Don’t let writers block readers

T Or vice versa

Intel® High Performance Data Division

Atomicity

A Consistency & integrity guarantees
I Required throughout the I/0 stack

I Required for data as well as metadata
A Metadata is data to the level below

I Cannot afford O(system size) recovery

A Transactions
I Move storage system between consistent states

I Recovery == rollback uncommitted transactions
A Prefer O(0) v. O(transaction size) recovery time

I Simplified interaction with failing subsystems for upper levels
I Nestable transactions required in a layered stack
I Scrub still required to protect against bitrot

Intel® High Performance Data Division

Transactions

A Transactions ordered by epoch #
I Writes apply in epoch order

I All writes in an epoch committed atomically

I All reads of an epoch see consistent data

A Applied within epoch scope
I Container granularity
I Multi-process and multi-object writes
I Single committer for each open scope

A Arbitrary transaction pipeline depth
I System may aggregate epochs
I Highest Committed Epoch (HCE) determined on epoch scope open

I “Slip” scope to check/wait for updates

Intel® High Performance Data Division iﬂtE'

Layered I/O stack Application || Query || Tools

Application 1/0O

A Applications and tools
I Index, search, analysis, viz, browse, edit
I Analysis shipping
I In-transit analysis & visualization

A Application 1/0 API
I Multiple domain-specific API styles & schemas

A 1/0 Dispatcher
I Impedance match application requirements to storage capability
I Burst Buffer manager

A DAOS-HA
I High-availability scalable object storage
I Follow-project from Fast Forward

A DAOS

I Transactional scalable object storage

I/O Dispatcher

Intel® High Performance Data Division

Scalable server health & collectives

A Health
I Gossip distributes “I’'m alive”
A Fault tolerant
A 0O(log n) latency

A Tree overlay networks
I Fault tolerant
A Collective completes with failure on group membership change
I Scalable server communications
A Scalable commit
A Collective client eviction
A Distributed client health monitoring

Intel® High Performance Data Division

Versioned object storag — n;“’;'[,ft;;f“‘,l"j? —

A COW & snapshot
I Transaction rollback e "jlt‘fdl

A Version intent log y ’ . J
i Applies writes in epoch order S S ! T S ——— N

A Writes persisted on arrival
I No serialisation / backpressure

T Full OSD blocks don’t have to move

A Extent metadata insert in epoch order
I Start immediately previous epochs complete
I On arrival when possible
I Otherwise via version intent log

Intel® High Performance Data Division

DAQOS Containers

/projects
L, /Legacy /HPC /BlgData
A Virtualizes Lustre’s underlying /N /N
object storage Simulation data MapReduce data
y rr= [W]
| Shared-nothing "
O,
A 10s of billions of objects TeATeaen
A Thousands of servers
A Private object namespace / schema
I Filesystem namespace unpolluted
A Transactional PGAS A
| Baseline: addr = <shard.object.offset>) //
. . _ _ 3
| HA: addr = <layout.object.offset> s
A Read & Write ‘?%,0
i No create/destroy ottset

I Punch == store Os efficiently

Intel® High Performance Data Division

I/O Dispatcher

A Abstracts Burst Buffer (NVRAM) and global (DAOS) storage

A 1/0 rate/latency/bandwidth matching
I Absorb peak application load
I Sustain global storage performance

A Layout optimization guided by upper layers
I Application object aggregation / sharding
A Stream transformation
A Semantic resharding
A Multi-format semantic replication

A Buffers transactions

A Higher-level resilience models
I Exploit redundancy across storage objects

A Scheduler integration
I Pre-staging / Post flushing

A End-to-end data integrity

Intel® High Performance Data Division

FoF HDF5 Data Objects

HDF5 Application 1/O

* Groups * Datatypes
* Datasets * Metadata (Attributes)

A Built-for-HPC object database

A New application capabilities
I Non-blocking 1/0
A Create/modify/delete HDF5 objects
A Read/write HDF5 Dataset elements

I Atomic transactions
A Group multiple HDF5 operations

A HDF5 Data Model Extensions

I Pluggable Indexing + Query Language
I Support for dynamic data structures

A New Storage Format
I Leverage |I/O Dispatcher/DAQOS capabilities
I End-to-end metadata+data integrity

Intel® High Performance Data Division

Big Data— Arbitrary Connected Graphs

A HDF5 Adaptation Layer (HAL)

I Storage API for ACG Ingress & Computation Kernel applications
I Stores partitioned graphs and associated information using HDF5

A ACG Ingress

I Extract meaningful information from raw data
I Transform data dependency information into a graph
I Partition graphs to maximize efficiency in handling and computation

A Graph Computation Kernel
A Machine Learning: LDA, CoEM, ALS, etc.
A Graph Analytics: PageRank, Triangle counting, Community structure

Intel® High Performance Data Division

Follow-on development

A Productization & system integration

I J O b SC h e d u I e r I n teg ra t I O n Compute HPC Fabric 1/0 Nodes SAN Fabric Storage

Nodes MPI / Portals Burst Buffer OFED Servers
I/0 Forwarding Server \

A Analysis shipping runtime ! | |
K] 0 . UOL
I MOnItOrlng and management 1/0 Forwarding Client MI:

A Btrfs VOSD — in-kernel (GPL) storage target

A In-transit analysis runtime

A DAOS-HA — Replication / erasure coding
I IOD/HDF5-HA: Fault-tolerant Burst Buffer & |10 forwarding

A Additional top-level APIs
I Application domain-specific — e.g. OODB, MapReduce etc.
I Layered over HDF5 or directly over IOD
I Associated tools

Intel® High Performance Data Division

Intel® High Performance Data Division

