
Lustre* - Fast Forward to Exascale
High Performance Data Division

 Eric Barton

18th April, 2013

2 Intel® High Performance Data Division

DOE Fast Forward IO and Storage

ÁExascale R&D sponsored by 7 leading US national labs
ï Solutions to currently intractable problems of Exascale required to meet the

2020 goal of an Exascale system

ÁWhamcloud & partners won the IO & Storage contract
ï Proposal to rethink the whole HPC IO stack from top to bottom
Å Develop a working prototype

Å Demonstrate utility of prototype in HPC and Big Data

ïHDF Group – HDF5 modifications and extensions

ï EMC – Burst Buffer manager & I/O Dispatcher

ïWhamcloud – Distributed Application Object Storage (DAOS)

ï Cray – Scale out test

ÁContract renegotiated on Intel acquisition of Whamcloud
ï Intel – Arbitrary Connected Graph computation

ïDDN – Versioning Object Storage Device

3 Intel® High Performance Data Division

Project Schedule

Á8 project quarters from July 2012 through June 2014
ïQuarterly milestones demonstrate progress in overlapping phases

ïPlanning – architecture – design – implementation – test – benchmark

 Project	Quarter
Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8
July	2012 Oct	2012 Jan	2013 April	2013 July	2013 Oct	2013 Jan	2014 April	2014

Planning
Solution	

Architecture

HDF	Demonstrations

IOD	Demonstrations

DAOS	Demonstrations

End-toEnd	Demo	

&	Reporting

Detailed	Design

ACG	Demonstrations

4 Intel® High Performance Data Division

Project Goals

ÁMake storage a tool of the Scientist
ïTractable management

ïComprehensive interaction

ïMove compute to data or
data to compute as appropriate

ÁOvercome today’s IO limits
ïMulti-petabyte datasets

ïShared file & metadata performance

ïHorizontal scaling & jitter

ÁSupport unprecedented fault tolerance
ïDeterministic interactions with failing hardware & software

ïFast & scalable recovery

ïEnable multiple redundancy & integrity schemes

5 Intel® High Performance Data Division

Non-blocking APIs

ÁJitter
ïScheduling noise

ïPower management

ïDynamic load imbalance

ÁTight coupling
ïBulk synchronous programming simplifies application development

ïMakes strong scaling harder

ÁLoose coupling
ïCloses idle “gaps”

ïRequires non-blocking IPC and IO

ÁAll IO non-blocking
ï Initiation procedure / completion event

P
ro

ce
ss

e
s

Time

6 Intel® High Performance Data Division

Collectives

ÁScalable O(log n) group operations
ïOpen, commit…

ÁPush communications up the stack
ïHigher levels may…

Å Be able to piggyback on their own communications.

Å Have access to higher performance communications.

Álocal2global / global2local
ïSingle process performs IO API call on behalf of process group

ï local2global creates opaque shareable buffer

ïglobal2local uses shareable buffer to bind local resources

7 Intel® High Performance Data Division

Locking & Caching

ÁSerialization kills scalability
ï It’s not the storage system’s responsibility

ÁStorage is not message passing
ïTightly coupled processes should

communicate directly

ÁLow-level IO should not predict high level caching requirements
ïRead-ahead / write behind is different from working set

ÁAvoid premature block alignment
ï It’s a needless source of contention

ÁDon’t let writers block readers
ïOr vice versa

8 Intel® High Performance Data Division

Atomicity

ÁConsistency & integrity guarantees
ïRequired throughout the I/O stack

ïRequired for data as well as metadata

Å Metadata is data to the level below

ïCannot afford O(system size) recovery

ÁTransactions
ïMove storage system between consistent states

ïRecovery == rollback uncommitted transactions

Å Prefer O(0) v. O(transaction size) recovery time

ïSimplified interaction with failing subsystems for upper levels

ïNestable transactions required in a layered stack

ïScrub still required to protect against bitrot

Don’t FSCK with DAOS

9 Intel® High Performance Data Division

Transactions

ÁTransactions ordered by epoch #
ïWrites apply in epoch order

ïAll writes in an epoch committed atomically

ïAll reads of an epoch see consistent data

ÁApplied within epoch scope
ïContainer granularity

ïMulti-process and multi-object writes

ïSingle committer for each open scope

ÁArbitrary transaction pipeline depth
ïSystem may aggregate epochs

ïHighest Committed Epoch (HCE) determined on epoch scope open

ï“Slip” scope to check/wait for updates

Epoch #

W
ri

te
s

10 Intel® High Performance Data Division

Layered I/O stack

ÁApplications and tools
ï Index, search, analysis, viz, browse, edit
ïAnalysis shipping
ï In-transit analysis & visualization

ÁApplication I/O API
ïMultiple domain-specific API styles & schemas

ÁI/O Dispatcher
ï Impedance match application requirements to storage capability
ï Burst Buffer manager

ÁDAOS-HA
ïHigh-availability scalable object storage
ï Follow-project from Fast Forward

ÁDAOS
ï Transactional scalable object storage

I/O Dispatcher

Application I/O

DAOS-HA

Application Tools Query

DAOS / Lustre Client

Lustre Server

11 Intel® High Performance Data Division

Scalable server health & collectives

ÁHealth
ïGossip distributes “I’m alive”

Å Fault tolerant

Å O(log n) latency

ÁTree overlay networks
ïFault tolerant

Å Collective completes with failure on group membership change

ïScalable server communications

Å Scalable commit

Å Collective client eviction

Å Distributed client health monitoring

12 Intel® High Performance Data Division

Versioned object storage

ÁCOW & snapshot
ïTransaction rollback

ÁVersion intent log
ïApplies writes in epoch order

ÁWrites persisted on arrival
ïNo serialisation / backpressure

ïFull OSD blocks don’t have to move

ÁExtent metadata insert in epoch order
ïStart immediately previous epochs complete

ïOn arrival when possible

ïOtherwise via version intent log

13 Intel® High Performance Data Division

DAOS Containers

ÁVirtualizes Lustre’s underlying
object storage
ïShared-nothing
Å 10s of billions of objects

Å Thousands of servers

ÁPrivate object namespace / schema
ïFilesystem namespace unpolluted

ÁTransactional PGAS
ïBaseline: addr = <shard.object.offset>

ïHA: addr = <layout.object.offset>

ÁRead & Write
ïNo create/destroy

ïPunch == store 0s efficiently

O
b

je
ct

14 Intel® High Performance Data Division

I/O Dispatcher

ÁAbstracts Burst Buffer (NVRAM) and global (DAOS) storage

Á I/O rate/latency/bandwidth matching
ï Absorb peak application load
ï Sustain global storage performance

Á Layout optimization guided by upper layers
ï Application object aggregation / sharding

Å Stream transformation
Å Semantic resharding
Å Multi-format semantic replication

ÁBuffers transactions

ÁHigher-level resilience models
ï Exploit redundancy across storage objects

ÁScheduler integration
ï Pre-staging / Post flushing

ÁEnd-to-end data integrity

15 Intel® High Performance Data Division

HDF5 Application I/O

ÁBuilt-for-HPC object database

ÁNew application capabilities
ïNon-blocking I/O
Å Create/modify/delete HDF5 objects

Å Read/write HDF5 Dataset elements

ïAtomic transactions
Å Group multiple HDF5 operations

ÁHDF5 Data Model Extensions
ïPluggable Indexing + Query Language

ïSupport for dynamic data structures

ÁNew Storage Format
ïLeverage I/O Dispatcher/DAOS capabilities

ïEnd-to-end metadata+data integrity

16 Intel® High Performance Data Division

Big Data – Arbitrary Connected Graphs

ÁHDF5 Adaptation Layer (HAL)
ïStorage API for ACG Ingress & Computation Kernel applications

ïStores partitioned graphs and associated information using HDF5

ÁACG Ingress
ïExtract meaningful information from raw data

ïTransform data dependency information into a graph

ïPartition graphs to maximize efficiency in handling and computation

ÅGraph Computation Kernel
Å Machine Learning: LDA, CoEM, ALS, etc.

Å Graph Analytics: PageRank, Triangle counting, Community structure

17 Intel® High Performance Data Division

Follow-on development

ÁProductization & system integration
ï Job scheduler integration

Å In-transit analysis runtime

Å Analysis shipping runtime

ïMonitoring and management

ÁBtrfs VOSD – in-kernel (GPL) storage target

ÁDAOS-HA – Replication / erasure coding
ï IOD/HDF5-HA: Fault-tolerant Burst Buffer & IO forwarding

ÁAdditional top-level APIs
ïApplication domain-specific – e.g. OODB, MapReduce etc.

ïLayered over HDF5 or directly over IOD

ïAssociated tools

18 Intel® High Performance Data Division

1
8

