DAOS Changes to Lustre®

High Performance Data Division

Johann Lombardi & Liang Zhen
April 17, 2013

* Other names and brands may be claimed as the property of others.

DAOS API Overview g o o2von [ver | oo

= Distributed Application Object Storage

Userspace

I/O Dispatcher

— Event-based API BIAYOR

e all operations are asynchronous Storage

&

— Distributed ACID transactions (epoch)

= Container
— special file in a the POSIX namespace

— can only be changed/accessed via the DAOS API
e only stat(2) & unlink(2) return valid information

— contains any number of shards

= Shard

— virtual storage target
e typically a new dataset/subvolume

— maintain a collection of objects

Intel® High Performance Data Division hpdd-info@intel.com lntel

Container & Shard

Project1

Container1

Shard1
Shard2
Shard3

Project2

Container2

Shard1 /

Shard2 —

Intel® High Performance Data Division

hpdd-info@intel.com

DAQOS object

Container Operations

= daos_container_open/close()
— get/release a container handle
— collective open/close

* daos_container_unlink()
— destroy a DAOS container
— All the shards associated with the container are also destroyed

* daos_container_query()

— fetch container information
e e.g. #shards, highest committed epoch, ..

Intel® High Performance Data Division hpdd-info@intel.com intel

Collective Open

Slave Master MDS OSTs
Clients Client

daos_container_open() = open(container)

—_ handle + capabilities

open handle —

daos_localZgIobaI()6

share global ——
daos_global2local() € handle

I/Os —_
ma
—_ Notify master of >
complétion 5
d . fe— Revoke
aos_container_close()
close(container) capabilities

e

-2 Non-Lustre communication ‘—» Collective communication —> Point to point communication

Intel® High Performance Data Division hpdd-info@intel.com

Shard Operations

* daos_shard_add()

— create a new shard
— update layout (including all copies)
— transfer capability list to new shard

* daos_shard disable()

— mark a shard as disabled in the layout

= daos_shard_list_obj()

— Parse list of non-empty objects in a shard

= daos_shard_query()

— fetch placement information, number of objects, ...

Intel® High Performance Data Division hpdd-info@intel.com

DAOS Objects

" No explicit create/destroy
— assumes all object exist
— objects are actually created on write (CROW)
— objects have an infinite size

" daos_object write()
— write into a DAOS object in a given epoch
— epoch value can be anything larger than the Highest Committed Epoch

"= daos_object _read()
— read DAOS object content from a committed epoch
— read from unwritten objects/extents returns zeroes

= daos_object _punch()

— discard data range

Intel® High Performance Data Division hpdd-info@intel.com intel

Epoch API

* Transaction identifiers passed in all DAOS 1/O operations
— readers can only read from already committed epochs
— writers can only write to not-yet-committed epochs

" Epochs are per-container
— may cross several containers in the future, notion of epoch scope
— daos_epoch_scope _open/close

" Epochs are totally ordered

— become persistent only after all prior epochs are persistent

— explicit commit from library user when all writes completed & flushed
e daos_epoch_commit()

— Highest Committed Epoch (HCE)

» daos_epoch_slip/catchup

Intel® High Performance Data Division hpdd-info@intel.com intel

Epoch Overview

C||ent(s) MDS OSTs

- epoch_scope_open(RW)
—3 Get HCE from shards

—

I/0s tagged with epoch_num >

—>
—>
—>

Wait for I/O0 €—

completions I/0 completions

T

epoch_commit(epoch_num)

3 ‘ Notifﬁ that D= Proceed with
epoch committed epocn_numis epoch flattening

now consistent
e wait for ack
epoch_scope_close()
s
‘_» Collective communication Point to point communication

Intel® High Performance Data Division hpdd-info@intel.com

Container & Shard Representation

= MIDT FID associated with
container

Layout Copy Obj1 Obj4 . .
-~ sEaiob)id I SEapbid Each shard is assigned a FID
ontainer -
Size, ... Size, ... sequence (SEQ)
Data Data . .
_ Perms Container layout stores list of
sequences

Rbiz0 — Layout is replicated on all the

SEQ|objid
Size, ... shards

Data Each shard maintains its own
object index

10

Intel® High Performance Data Division hpdd-info@intel.com ‘ intel

Shard on-disk Representation

= Considered btrfs, but finally chose ZFS

" |ntent logs (IL)
— operation log (objid, offset, length, ...)

— log file storing data blocks from writes

oo [e [o

= Ashard is represented by multiple ZFS datasets

— root dataset storing intent logs and configuration

— intent log flattening

e Parse intent log and execute operations

— staging dataset where flattening takes place
— HCE snapshots
— one LU stack per dataset

= Extensions to OSD APl and shard-aware OFD (SFD)

Intel® High Performance Data Division hpdd-info@intel.com

DAOS Library / Lustre Client Interface

Lustre POSIX client Lustre DAOS client - DAOS I/O path qUite Simple
Application I/O Middleware _ locki 2 L.
(I0D) no locking & no striping
POSIX API DAOS API — does not require CLIO complexity
- - — DAOS Client (DCL) sits directly on
top of OSCs
User POSIX SYSTEM Open/Close
CALLS T IocTL "
Kernel = Also LMV/MDC changes to

VFS

support container & epoch

DCL

VVP/SLP = All operations are
- asynchronous
— POSIX AlO not generic enough
lll — owh event & event queue
2 3 9 mechanisms

— relies on ptlrpcd

0SsC
0SsC
0SsC

Intel® High Performance Data Division hpdd-info@intel.com intel

