Discussion: DNS for NIDs High Performance Data Division Doug Oucharek April 18, 2013 ^{*} Other names and brands may be claimed as the property of others. #### The Need - A more flexible way to map targets to NIDs - Support for DHCP - Needed to run in the cloud - Preferable for running in enterprise environments - A scalable DNS-like model for NID mapping #### **Overview** # **Review: Imperative Recovery** - Accelerates client reconnection - Version numbered Target-NID table - MGS notifies clients of change - Clients retrieve just the changes Intel® High Performance Data Division Type of Publisher/ Subscriber model Target - NID Table | Target | Version | NID | |---------|---------|------------------| | OST0000 | 57 | 192.168.1.3@tcp3 | ### Why DHCP does not work today - Non-MGS servers register their address with MGS but must stick to a static set of NIDs in file system configuration - Failover NIDs stored statically...currently cannot support DHCP - MGS and Routers must be static #### **Clients and Non-MGS Servers** | Requirement | Suggestions | |--|--| | Don't keep static NID lists | Rely on the NIDs in the Target-NID table Configure with Target names mapped to DNS names | | Failover NIDs need to be dynamic | See above | | Need to retrieve NIDs for a target from a service | Could use Target-NID table introduced
by Imperative Recovery Use existing Dynamic DNS systems via
kernel upcall | | Nice to have: Isolate knowledge of NIDs to LNet (give file system NID-Amnesia) | Push target to NID service to LNet. File system only passes target names to LNet, not NIDs. | # MGS | Requirement | Suggestions | |---|---| | Needs to register NID where all other nodes can find it | Publish NID to Dynamic DNS server Respond to broadcast requests for address Publish MGS service via Zeroconflike system Use a distributed database | | If MGS is DNS distributor, needs low-cost redundancy | Use 2-phase commit for registrations | # **NID Distributor** | Requirement | Suggestions | |----------------------------------|--| | Network Service | MGS Imperative Recovery Dynamic DNS Database (DaaS) | | Redundant | If using MGS, see previous slide If using Dynamic DNS, follow standard If database, use replication | | Scalable notifications | Rely on Imperative Recovery Use a broadcast channel Use a "smart" broadcast like the Gossip protocol | | Flexible concept of an "address" | Use features in the DNS spec to
configure for various address formats On store only strings for NIDs | #### **Routers** | Requirement | Suggestions | |--|--| | Routers register with DNS distributor like servers | Extend Imperative Recovery
system to receive router
registrations Routers register with Dynamic DNS
system | | Routing tables become dynamic | Have Imperative Recovery generate and distribute routing table with Target-NID table Have routers respond to broadcast requests where they send their configured NIDs to requestor Use target names in existing routing configurations |