Intel® Dynamic LNet Configuration

Amir Shehata
8 April 2014
Dynamic LNet Configuration

Overview

• Purpose
• What can it do?
• What doesn’t it do?
• Parameter Configuration
• C Configuration API

* Some names and brands may be claimed as the property of others.
Purpose

- Dynamically modifying LNet configuration capability is being built into the LNet module and will be landed in 2.7
- DLC aims at easing the process of fine tuning LNet without having to restart the LNet Kernel modules. IE Configuration parameters are changed on a fully running system.
 - Streamlines setting and optimizing LNet parameters
- DLC makes configuration of key LNet parameters easier and more flexible
What can it do?

- Adding/Deleting networks
- Adding/Deleting routes
- Configuring router buffer pools
- Enabling/Disabling routing.
- Showing routing information
- Importing/exporting configuration in YAML format
What doesn’t it do?

• For the first version of DLC, the most used parameters were picked to be configured dynamically.

• Currently DLC doesn’t configure some of the LND parameters
 • Ex: map_on_demand

• Other examples of parameters not currently supported are:
 • Check_routers_before_use
 • avoid_asym_router_failure
 • dead_router_check_interval
Parameter Configuration

- DLC Provides two ways of configuring LNet parameters
 - Via a Command Line tool, inetctl
 - Via a C API
Adding Networks

From Inetctl:
net add: add a network
 --net: net name (ex tcp0)
 --if: physical interface (ex eth0)
 --peer-timeout: time to wait before declaring a peer dead
 --peer-credits: define the max number of inflight messages
 --peer-buffer-credits: the number of buffer credits per peer
 --credits: Network Interface credits
 --cpts: CPU Partitions configured net uses

Ex:
Inetctl net add --net tcp0 --if eth0 --peer-timeout 180 --peer-credits 8 --credits 1024
Removing Networks

From Inetctl:
net del: delete a network
 --net: net name (ex tcp0)

Ex:
Inetctl net del --net tcp0
Showing Networks

From Inetctl:
net show: show networks
 --net: net name (ex tcp0) to filter on
 --detail: display detailed output per network

Ex:
show all the networks
Inetctl net show
show all the networks in detail
Inetctl net show --detail
show a specific network
Inetctl net show --net tcp0
show a specific network in detail
Inetctl net show --net tcp 0 --detail
Show network sample output

- All show output is in YAML format

net:
 - nid: 0@lo
 status: up
 tunables:
 peer_timeout: 0
 peer_credits: 0
 peer_buffer_credits: 0
 credits: 0
 - nid: 192.168.205.130@tcp1
 status: up
 interfaces:
 0: eth3
 tunables:
 peer_timeout: 180
 peer_credits: 8
 peer_buffer_credits: 0
 credits: 256
Adding Routes

From Inetctl:

route add: add a route

 --net: net name (ex tcp0)
 --gateway: gateway nid (ex 10.1.1.2@tcp)
 --hop: number to final destination (1 < hops < 255)
 --priority: priority of route (0 - highest prio)

Ex:

Inetctl route add --net tcp0 --gateway 10.1.1.2@tcp1 --hop 1--priority 0
Removing Routes

From Inetctl:
route del: delete a route
 --net: net name (ex tcp0)
 --gateway: gateway nid (ex 10.1.1.2@tcp)

Ex:
Inetctl route del --net tcp0 --gateway 10.1.1.2@tcp1
Showing routes

From Inetctl:

route show: show routes
- --net: net name (ex tcp0) to filter on
- --gateway: gateway nid (ex 10.1.1.2@tcp) to filter on
- --hop: number to final destination (1 < hops < 255) to filter on
- --priority: priority of route (0 - highest prio to filter on
- --detail: display detailed output per route

Ex:

Inetctl route show –net tcp0
Show route sample output - detailed

- All show output is in YAML format

route:
 - net: tcp2
gateway: 192.168.206.133@tcp
 hop: 1
 priority: 0
 state: up
Configuring Router Buffer Pools

- Configuring router buffer pools while routing is disabled, stores the configured values, which would take effect when routing is enabled.
- Disabling and enabling routing doesn’t reset router buffer pools values.
- Configuring router buffer pools while routing is enabled takes effect immediately.
- Router buffer pool sizes adhere to min and max values.
Configuring Router Buffer Pools

From Inetctl

set tiny_buffers: set tiny routing buffers
 VALUE must be greater than 0

set small_buffers: set small routing buffers
 VALUE must be greater than 0

set large_buffers: set large routing buffers
 VALUE must be greater than 0

Ex

set tiny_buffers 1024
Enabling/Disabling Routing

• Enabling and disabling the routing feature on a node can be done dynamically

From InetctI

set routing: enable/disable routing

0 - disable routing
1 - enable routing

Ex:

#enable routing
set routing 1

#disable routing
set routing 0
Showing routing information

- All show output is in YAML format

```yaml
routing:
  - cpt[0]:
    tiny:
      npages: 0
      nbuffers: 2048
      credits: 2048
      mincredits: 2048
    small:
      npages: 1
      nbuffers: 16384
      credits: 16384
      mincredits: 16384
    large:
      npages: 256
      nbuffers: 1024
      credits: 1024
      mincredits: 1024
  - enable: 1
```
Importing YAML configuration

• It’s possible to import a file describing LNet configuration in YAML format

From Inetctl

import FILE
import < FILE : import a file
 --add: add configuration
 --del: delete configuration
 --show: show configuration
 --help: display this help
If no command option is given then --add is assumed by default

Ex:
import < config.yaml # use config.yaml to add LNet configuration
import --del < config.yaml # use config.yaml to delete LNet configuration
import --show < config.yaml # use config.yaml to show LNet configuration
Exporting YAML configuration

• It is possible to export LNet configuration in YAML format

From Inetctl
export FILE
export > FILE : export configuration
 --help: display this help

Ex:

export > config.yaml
YAML input/output example

net:
 - net: tcp3
 status: up
interfaces:
 0: eth4
tunables:
 peer_timeout: 180
 peer_credits: 8
 peer_buffer_credits: 0
credits: 256

route:
 - net: tcp6
 gateway: 192.168.29.1@tcp
 hop: 4
 detail: 1
 seq_no: 3
 - net: tcp7
 gateway: 192.168.28.1@tcp
 hop: 9
 detail: 1
 seq_no: 4
buffer:
 - tiny: 1024
 small: 2048
 large: 4096
 ...

...
C Configuration API

- Dynamic LNet Configuration introduces a C-library which can be used to configure LNet parameters.
- The library introduces two types of APIs
 - APIs to configure specific parameters
 - APIs which accept YAML input to configure a set of parameters.
- The C-library is the underlying infrastructure used by Inetctl.
- All APIs have an out parameter which is a YAML error block describing the errors.
- Show APIs have an out parameter which is a YAML show block describing the show output.
- YAML blocks can be manipulated and printed to a file stream.
- The C-library can be used in interpreted languages such as Python, which is useful when writing configuration scripts or possibly a front end for configuring LNet.
C Configuration API – Python example

- Created a SWIG wrapper around the C Library
- This allows the C-API to be called from python scripts.

Ex: Configuring a network from a python script

```python
import lustreconfigapi
rc, yaml_err = lustreconfigapi.lustre_Lnet_config_net("tcp", "eth0",
    180, # peer timeout
    8, # peer credits
    0, # peer buffer credits
    256, # network interface credits
    None, # CPU affinity assignment
    -1) # sequence number used to identify the transaction

# print the YAML error to file
lustreconfigapi.cYAML_print_tree2file(f, yaml_err, 0)
```
C Configuration API – YAML input

• The API provides a way to Add, Delete and show configuration parameters via YAML input
• The YAML input is as described above.
C Configuration API - Note

- Note the YAML output from the show APIs can be fed directly into the APIs which take YAML input to add, delete or show LNet Parameters.

- This allows for scenarios such as
 - querying a node for its configuration
 - storing the YAML output in a file
 - Feeding that YAML file to configure the node on restart.
 - Or possibly to configure other nodes.
Questions?