Cray’s Storage History and Outlook – Lustre+

Jason Goodman, Cray
LUG 2015 - Denver
Agenda

● Cray History – from Supercomputers to Lustre

● Where we are Today
 ● Cray Business
 ● OpenSFS

● Flashback to the Future – SSDs, DVS, and Beyond

● Questions
The future is seldom the same as the past

Seymour Cray
June 4, 1995
Cray Timeline – for Lustre, Storage, and Leinies

1972

Cray 1
Los Alamos

ECMWF

Cray Y- MP

Cray to SGI

Red Storm

DMI

Cielo

iVEC / Pawsey

NCSA Blue Waters

Trinity

PGS

Cray Sonexion

Lustre

Cray DVS

1868 Bock

Leinenkugel's

Red Storm

Cielo

Trinity

PGS

NCSA Blue Waters

Cray Sonexion

Cray DVS

Lustre

Cray timeline - for Lustre, Storage, and Leinies.
Focused on Data-Driven Workflows and Industries

Compute
- Supercomputers
- Flexible Clusters
- Hybrid Architectures

Store
- High Performance Storage
- Tiered Storage & Archive

Analyze
- Graph Analytics
- Hadoop Solutions

- Earth Sciences
- Manufacturing
- Energy
- Life Sciences
- Higher Education
- Financial Services
- Government and Defense
Workflow Ready Solutions - Span Entire Stack

- Qualified End-to-End
- Cray System Architectures
- Aries, InfiniBand, Ethernet
- Cray Sonexion Cray TAS
- Application I/O Optimization
- File Systems Leadership & Expertise
- Scalable Networking Experts
- Best in Class Storage Systems

Cray System Architectures

Qualified End-to-End Performance Optimization

Cray Sonexion Cray TAS

Aries, InfiniBand, Ethernet

LUG 2015
Cray Investing in Lustre

OpenSFS – Original Founder and Board Member

• Cray, DDN, LLNL, ORNL
• Non-profit technical organization focused on high-end open-source file system technologies

Goals

• Collaboration among entities deploying leading edge HPC file systems
• Driving roadmap for future requirements into OpenSFS
• Supporting Lustre file system releases designed to meet these goals

Lustre development process reestablished
OpenSFS partnership created
Multi-stage roadmap in place
Cray’s Role

- Cray Architecture and Best Practices
- Cray Testing & Validation
- OpenSFS
- Cray Customer Requirements
- Full Cray Support

Lustre
OpenSFS – New 2015 Membership Offer

- Cray / OpenSFS offering 5K off first year membership

- Use towards any membership level
 - Promoter, Adopter, or Supporter
Data-Driven Workflows

Managing Data from High Performance Storage to Deep Archives
Common Workflow

Acquire

- Data Collection and Ingest
- High-Speed Data Movers
- Media

Store and Process

- CRAY DataWarp
- Linux x86 Linuxers

Archive

- Users and Applications

Transparent Data Movement and User Access

- CRAY SONEXION
- CRAY TIERED ADAPTIVE STORAGE

Additional Text

- NFS, CIFS, FTP
- Flexible Tiered Storage Pool
- Supercomputers
- Parallel File Systems
- Tape Archives
- Acquire Store and Process
- Users and Applications
Case Study: KAUST

- **Industry partners**
 - Massachusetts Institute of Technology (MIT)
 - London’s Imperial College
 - Hong Kong University of Science and Technology
 - Woods Hole Oceanographic Institution
 - Institut Français du Pétrole
 - National University of Singapore
 - The American University in Cairo
 - Technische Universität München
 - King Abdulaziz City for Science and Technology
 - King Fahd University of Petroleum and Minerals
 - Saudi Aramco
 - Schlumberger
KAUST Requirements

- **Petascale supercomputing system**
 - Replacing existing IBM® Blue Gene® (222 Tflops) with XC40
 - “Burst buffer” caching tier

- **Parallel file system**
 - 500 GB/sec sustained performance
 - Integration with tiered storage and burst buffer solution

- **Tiered storage for archives**
 - 100 PB of capacity with two copies
 - Tiered integration with parallel file system
KAUST Cray Solution

● Cray XC40™
 ● 5.6 Pflops sustained performance with Cray Aries interconnect
 ● 792 TB of memory
 ● Cray DataWarp™ with performance exceeding 1 TB/sec

● Cray Sonexion® 2000 Storage System
 ● 17.2 PB of usable capacity with performance exceeding 500 GB/sec
 ● Lustre® file system 2.5 with HSM extensions

● Cray Tiered Adaptive Storage (TAS)
 ● Cray TAS Connector for Lustre and Versity Storage Manager
 ● Spectra Logic T-Finity with 100 PB of capacity with IBM TS1150 drives
Flashback to the Future
Exascale Computing Memory Trends

Today

- CPU
- Memory (DRAM)
- Storage (HDD)

Future

- CPU
- Near Memory (HBM/HMC)
- Far Memory (DRAM/NVDIMM)
- Near Storage (SSD)
- Far Storage (HDD)

On Node

- On Node

Off Node

- Off Node
Cray DataWarp I/O Accelerator – for Cray XC40

DataWarp overcomes the performance gap between compute and disk storage

- Pure Performance
 - Scale from 70 thousand to 40 million IOPS per system

- Breakthrough Efficiencies
 - 5x the performance of disk at the same cost

- Balanced and Cohesive architecture
 - No application changes needed
 - Quality of Service per-application

DataWarp I/O Blades include SSD cards
User-directed Checkpoint / Restart

- Explicit use case
- User asks for enough SSD to cover at least 2X memory
- High Bandwidth checkpoints are written to SSD
- Followed by an asynchronous trickle out to rotating storage between checkpoints
“LANL has been investigating burst buffer capabilities for years and the DataWarp technology in the Cray XC40 Trinity system will provide the first multi-petabyte multi-terabyte/sec IO burst handling capability ever.”

Gary Grider, High Performance Computing Division Leader

Use case example: checkpoint/restart
Questions?

- **Resources**
 - cray.com/storage
 - opensfs.org/get-involved-with-lustre-for-free/

- **Cray people here at LUG**
 - Jason Goodman (jasong@cray.com)
 - Cory Spitz
 - Dave McMillen
 - Patrick Farrell
 - Chris Horn
 - Charlie Carroll
Legal Disclaimer

Information in this document is provided in connection with Cray Inc. products. No license, express or implied, to any intellectual property rights is granted by this document.

Cray Inc. may make changes to specifications and product descriptions at any time, without notice.

All products, dates and figures specified are preliminary based on current expectations, and are subject to change without notice.

Cray hardware and software products may contain design defects or errors known as errata, which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Cray uses codenames internally to identify products that are in development and not yet publically announced for release. Customers and other third parties are not authorized by Cray Inc. to use codenames in advertising, promotion or marketing and any use of Cray Inc. internal codenames is at the sole risk of the user.

Performance tests and ratings are measured using specific systems and/or components and reflect the approximate performance of Cray Inc. products as measured by those tests. Any difference in system hardware or software design or configuration may affect actual performance.

The following are trademarks of Cray Inc. and are registered in the United States and other countries: CRAY and design, SONEXION, URIKA and YARCDATA. The following are trademarks of Cray Inc.: ACE, APPRENTICE2, CHAPEL, CLUSTER CONNECT, CRAYPAT, CRAYPORT, ECOPHLEX, LIBSCI, NODEKARE, THREADSTORM. The following system family marks, and trademarks of Cray Inc.: CS, CX, XC, XE, XK, XMT and XT. The registered trademark LINUX is used pursuant to a sublicense from LMI, the exclusive licensee of Linus Torvalds, owner of the mark on a worldwide basis.

Other names and brands may be claimed as the property of others. Other product and service names mentioned herein are the trademarks of their respective owners.

Copyright 2014 Cray Inc.