
Lustre* 2.8 and Beyond
Andreas Dilger, High Performance Data Division

Features are not necessarily be tied to specific releases
• Versions and features listed here are only targets and not guaranteed

Feature/component landings will be more "all or nothing"
• Still possible to land independent functional parts of a feature

• Avoids landing only a few (otherwise useless) patches of a feature

More focus on testing patch series before landing
• Whole patch series to be landed via merge commit after testing

Improved focus on documentation, comments, man pages
• Make the code easier to understand and maintain in the future

Development Process Changes

LUG 2015 2

Features at or near completion
• LFSCK Phase 4 - Performance Improvements

• DNE Phase 2 Striped Directories - Asynchronous Commits

• Client IO Simplification and Speedup

Features starting early development
• Multiple metadata-modifying RPCs (multi-slot last_rcvd)

• First generation Intel Omni Path Fabric / Dynamic LNet Configuration 2

• ZFS* Enhancements

• Protocol Documentation

• Data on MDT Prototype (DoM)

• Progressive File Layout Prototype (PFL)

Overview of Features

3LUG 2015

LFSCK performance improvements (Phase 4)
• Improve object iteration, don't load objects unnecessarily
• Avoid a full scrub if only a few objects are found inconsistent

• Tunable, launch full scrub if more than 60 errors within 60s
• Limit DLM locking to only affected name instead of whole directory
• Predict locking based on recent history

• LFSCK doesn't lock by default, only lock & reverify on inconsistency
• If errors recently seen LFSCK locks objects before doing checks

• Improved logging of LFSCK-detected inconsistencies

LFSCK Phase 4 is the final phase of this project
http://wiki.opensfs.org/images/3/3c/LFSCK_Performance_SolutionArchitecture.pdf
http://cdn.opensfs.org/wp-content/uploads/2013/04/Zhuravlev_LFSCK.pdf

LFSCK Phase 4 (Intel/OpenSFS 2.8)

4LUG 2015

http://wiki.opensfs.org/images/3/3c/LFSCK_Performance_SolutionArchitecture.pdf
http://cdn.opensfs.org/wp-content/uploads/2013/04/Zhuravlev_LFSCK.pdf

Spread a single directory across multiple MDTs
• Reduce contention, improve performance for large directories
• Directory layout + name hash locates slave MDT directory entry
• Directory shard on each MDT independent (lock, lookup, modify)
• Inode created on the same MDT as name entry
• Tool to migrate directories from one MDT to another

DNE Phase 2 Async Commits is the final phase of this project

DNE Phase 2 Striped Directories (Intel/OpenSFS 2.8)

LUG 2015 5

Dir shard 0

Striped Directory

fileA

Dir shard 1 Dir shard 2 Dir shard 3

fileB fileC fileD

Change within MDT (mkdir, rmdir, rename) never synchronous

DNE remote/striped directory create synchronous in 2.4-2.7
• Cross-MDT rename() or link() weren't working (returned -EXDEV)

Async commit implements distributed DNE recovery
• Each target (master/slave) writes a full redo log of all updates

• If any target commits a change it can be replayed on all involved targets

• Ensures all-or-nothing semantic for namespace-visible changes

• Reduced latency for remote/striped directory creates

• Allow rename() and link() to work correctly across MDTs

• Foundation for future features (e.g. cross-MDT mirrored objects)
http://wiki.opensfs.org/images/f/ff/DNE_StripedDirectories_HighLevelDesign.pdf

DNE 2 Asynchronous Commit (Intel/OpenSFS 2.8)

LUG 2015 6

http://wiki.opensfs.org/images/f/ff/DNE_StripedDirectories_HighLevelDesign.pdf

Clean up CLIO code and interfaces
• Simplify complex internal locking code

• Replace old ioctl interfaces with proper methods

• Remove non-functional interop code for WinNT and MacOS

• Remove extra abstraction layer complexity and overhead

• Remove access to LOV internals throughout code

• Preparation for handling of more complex file layouts (e.g. PFL)

Client Performance Improvements
• Larger RPC sizes for improved allocation and disk IO

• Single-threaded IO performance improvements

http://wiki.opensfs.org/images/b/b7/CLIOSimplificationDesign_HighLevelDesign.pdf

Client IO Cleanup/Speedup (Intel/OpenSFS 2.8+)

LUG 2015 7

http://wiki.opensfs.org/images/b/b7/CLIOSimplificationDesign_HighLevelDesign.pdf

Currently limited to one modifying RPC (+close) per client
• last_rcvd slot on MDT for each client to reconstruct reply
• Many concurrent clients limited by MDS performance

Dynamic log on MDT for multiple saved RPC replies per client
• Each metadata-modifying RPC has a separate tag/index
• Single client multi-threaded create/unlink performance improved

https://jira.hpdd.intel.com/browse/LU-5319

Client Metadata RPC Scaling (Bull/Intel 2.8)
(aka multi-slot last_rcvd)

LUG 2015 8

https://jira.hpdd.intel.com/browse/LU-5319

LNet support for Intel Omni-Path host fabric interface (HFI)
• Next generation interconnect from Intel

• Compatible with OFED verbs interface

• May need LNet o2iblnd tuning for best performance

Improved Dynamic LNET Config
• Per-NI tunables instead of per-LND

• Auto-tune parameters based on network interface type

• Optimize for Mellanox*, Intel® True Scale HCA, and Intel® Omni-Path HFI

Intel® Omni-Path Architecture Gen 1 (Intel 2.8)
Dynamic LNet Config Phase 2 (Intel 2.9)

LUG 2015 9

Changes for ZFS OSD (2.8)
• 1MB+ ZFS blocksize (IO performance)

• Read IO optimization (IO performance)

• ZIL support for fast sync (IO & metadata performance)

Changes to core ZFS code (2.10?)
• Parity declustering (availability)

• Distributed hot spares (availability)

ZFS Enhancements (Intel, 2.8+)

LUG 2015 10

Document the PTLRPC wire structures, message flow, states
• POSIX operations (mount, open, close, setattr, create, unlink, etc)

• MDS state handling (connect, disconnect, FLD, SEQ, PING, etc)

• IO operations (read, write, truncate, setattr, grant)

• OSS state handling (precreate, orphan cleanup, destroy, etc)

• Quota management

• OUT distributed updates (DNE, LFSCK, Async Commit)

http://wiki.opensfs.org/Contract_SFS-DEV-005

Protocol Documentation (Intel/OpenSFS)

LUG 2015 11

http://wiki.opensfs.org/Contract_SFS-DEV-005

Efficiently store small files on the MDT(s)
• Avoid OST BRW RPC + disk seek + OST lock for each file access

• Use small-file optimized MDT storage (RAID-10/SSD/NVRAM)

• Avoid RAID-5/6 read-modify-write for small writes

Space usage on MDT(s) managed by quota

Small files are determined by the file layout
• Maximum MDT file size can be specified by min(user, admin)

• Typically expected to be <= 1MB, dependent on MDT space

Complimentary with DNE 2 striped directories
• Scale small file IOPS horizontally with multiple MDTs

Data on MDT Prototype (Intel/OpenSFS)

LUG 2015 12

DoM layout chosen at file creation time like files on OSTs
• Can't do it after write because objects are allocated at open()

• Default DoM striping on subdirectories inherited by newly created files

http://cdn.opensfs.org/wp-content/uploads/2014/04/D1_S10_LustreFeatureDetails_Pershin.pdf

http://wiki.opensfs.org/images/b/be/DataonMDSDesign_HighLevelDesign.pdf

Data on MDT Implementation

LUG 2015 13

Without DoM

Client MDS

OSS
OSS

OSS

open(O_RDWR|O_TRUNC),
stat(), truncate()

truncate, enqueue,
write

lock, read,
attributes

Client MDS

OSS
OSS

OSS

open(O_RDWR|O_TRUNC),
stat(), truncate()

layout, lock,
attributes, read

With DoM

layout, attributes

http://cdn.opensfs.org/wp-content/uploads/2014/04/D1_S10_LustreFeatureDetails_Pershin.pdf
http://wiki.opensfs.org/images/b/be/DataonMDSDesign_HighLevelDesign.pdf

Allow compound layouts for regular files
• Component layouts describe one or more extents of a file

• Layout extents do not overlap for PFL files

• Start with few stripes, increase stripe count as file size increases

• Balance lower overhead vs. performance and space balance

Progressive File Layout Prototype (Intel/ORNL)

LUG 2015 14

Component 0

Component 1
1G

EOF
Component 2

32M

1614 15
1G

1716

Object 4
0

32M

Code cleanups (Cray*/Intel®/ORNL)
• Remove dead code and useless wrappers

• Update to match upstream kernel coding style

• Port patches to/from upstream kernel

• Clean up or eliminate server kernel/ldiskfs patches

Project Quotas (DDN*)
• Allow quota tracking on subtrees independent of UID/GID

Network Authentication and Encryption (Bull*/IU*/Seagate*)
• Kerberos user/node authentication, RPC encryption

• Shared Secret Key node authentication, RPC encryption

Miscellaneous features

LUG 2015 15

• No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

• Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-
infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade.

• This document contains information on products, services and/or processes in development. All information provided here is subject to change without notice.
Contact your Intel representative to obtain the latest forecast, schedule, specifications and roadmaps.

• The products and services described may contain defects or errors known as errata which may cause deviations from published specifications. Current
characterized errata are available on request.

• Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548-4725 or by visiting
www.intel.com/design/literature.htm.

• Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies
depending on system configuration. No computer system can be absolutely secure. Check with your system manufacturer or retailer or learn more at
http://www.intel.com/content/www/us/en/software/intel-solutions-for-lustre-software.html.

• Tests document performance of components on a particular test, in specific systems. Differences in hardware, software, or configuration will affect actual
performance. Consult other sources of information to evaluate performance as you consider your purchase.

• For more complete information about performance and benchmark results, visit http://www.intel.com/performance.

• Intel, the Intel logo and Intel® Omni-Path are trademarks of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others

© 2015 Intel Corporation.

Legal Information

http://www.intel.com/design/literature.htm
http://www.intel.com/content/www/us/en/software/intel-solutions-for-lustre-software.html
http://www.intel.com/performance

4/14/2015LUG 2015 17

	Lustre* 2.8 and Beyond
	Development Process Changes
	Overview of Features
	LFSCK Phase 4						(Intel/OpenSFS 2.8)
	DNE Phase 2 Striped Directories	 (Intel/OpenSFS 2.8)
	DNE 2 Asynchronous Commit	(Intel/OpenSFS 2.8)
	Client IO Cleanup/Speedup	 (Intel/OpenSFS 2.8+)
	Client Metadata RPC Scaling				(Bull/Intel 2.8)�(aka multi-slot last_rcvd)
	Intel® Omni-Path Architecture Gen 1	(Intel 2.8)�Dynamic LNet Config Phase 2		 	(Intel 2.9)
	ZFS Enhancements						(Intel, 2.8+)
	Protocol Documentation				(Intel/OpenSFS)
	Data on MDT Prototype			(Intel/OpenSFS)
	Data on MDT Implementation
	Progressive File Layout Prototype		(Intel/ORNL)
	Miscellaneous features
	Legal Information
	Slide Number 17

