Managing self-encrypting HDDs with Lustre/ZFS

LUG 2017

Q2-2017

Josh Judd, CTO
(Brief) Agenda

• 15m, so this is an overview only – 10,000 foot view
• Full presentation will be at 2017 ORNL "Lustre Ecosystem”

Hanover Maryland, July 25-26
http://lustre.ornl.gov/ecosystem-2017

• Or, stop by WARP’s LUG booth to chat… er… pretty quickly…
Data at Rest Encryption

• Several options for encrypting disks
• An open software-only approach could be something like this:

```
cd /dev/disk/by-vdev
cryptsetup create eXXpAdYY eXXpAdYY
cryptsetup luksFormat /dev/mapper/eXXpAdYY
cryptsetup luksOpen eXXpAdYY eXXpAdYY
mkfs [ ... ] /dev/mapper/eXXpAdYY
```

PROBLEM: “Substantial” performance impact for SSDs (e.g. 50%) and any other CPU- or latency-intensive workloads

(**Note: e_p_d_ is WARP’s meaningful UDEV scheme for disk names)
Hardware Data at Rest Encryption

• **Solves** performance problems with software approach
• Historically, required expensive proprietary systems
• Now, can be done with **standard** hardware at low incremental cost
 – E.g., +2% or so system-level cost vs. equivalent non-encrypted drives

• **NEW PROBLEM**: Open software lags far behind for managing keys, lock states, and other encryption-specific features

• **New Solution**: DIY tools are not all that difficult to write
HGST TCG SAS Helium HDDs and SSDs

• Underlying hardware in reference solution: HGST TCG drives
• TCG = “Trusted Computing Group” standard for “Self Encrypting Drives”, which provides multiple benefits:
 – Transparency: No OS or app modifications required
 – Re-encryption: With SED, there is no need to ever re-encrypt data
 – Performance: No degradation in SED performance; hardware-based
 – Standardization: Whole industry is building to the TCG/SED specifications
 – Safety: Drives can be unlocked with multiple keys – can cancel keys known by one specific admin without effecting organization’s ability to access data
• BDE = “Bulk Data Encryption” is a similar standard, but strictly for lower end SATA drives, with fewer features and lower security
Open SED Functional Requirements

• At a high level, tools must handle cases such as:
 – Detect if a drive supports encryption, and if so, whether it is TCG vs. BDE
 – Manage PINs for all drives collectively and securely
 • Admins don’t have to manually unlock 1000s of drives in a single rack
 • PINs can be easily replicated and backed up
 – Turn drive locking on and off for individual drives or full systems
 – Allow all running directly-connected servers to “see” all drives, for HA
 – Allow drives to remain unlocked when OSS/MDS/MGS reboot or switchover
 – Manage PINs when replacing a failed drive
 – Handle lock status changes for re-seating drives
 – Display status of locking
Open SED Software Design

• WARP’s approach:
 – CLI utilities to manage – Encryption is changed very very rarely, and should not be changed by Jr Admins, so GUI management wasn’t a priority
 – Store the (large number of) drive PINs in a separate encrypted container file
 – Utilizes will accept a single password to unlock that file, then manage PINs on the drives for you
 – If you copy a single container file (backup or replicate) you’ll get all the PINs copied securely
 – If an admin quits, you can change just one password
Open SED “WARP Implementation” Walk Through

• Initial power on: All TCG drives are encrypting, but unlocked
 – They look just like any other drive, and are accessible to all attached servers
 – However, *internally*, they are already using 256-bit encryption
• Initialize drive locking with WARP’s “wmsedisk” tool
 – Creates encrypted “secure_keys_container” file, which contains all drive PINs, and can be backed up and/or copied to other WARP servers
 – All drives are now encrypted *and* protected, so that they would be unreadable if powered off
 – However, they are currently unlocked and thus visible to all directly SAS-attached WARP servers
• Create pools and filesystems, *if* they didn’t already exist
 – Unlike software encryption method, this step actually *can* be performed *first*
Open SED Walk Through (continued)

• Test to ensure locking is working as expected
 – Completely power down all servers and JBODs
 – Power on servers then JBODs
 – All drives should be locked and *not usable* by any of the servers

• Log into any attached server which has “secure_keys_container”

• Send command to unlock all drives with “wmsedisk”
 – Prompts for your PIN container password, and makes drive PINs available
 – The server you’re on will now see all drives as mountable
 – Run “partprobe” on all other directly-attached servers to get them to notice

• Import all zpools to their associated servers, and start Lustre

• Until the next cold boot of the JBODs, or ejection of HDDs/SSDs, it should work like any other Lustre system
Questions?
Please stop by WARP/HGST booth

Q2-2017
Josh Judd, CTO